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Abstract—
Tomorrow, advanced mobile robotic applications have to

be able to cope with various situations and perform tasks
in a dynamic environment. Furthermore, finding concrete
applications in a wide range of user oriented industrial prod-
ucts, such systems, embedding several computing units,
have to support both increasing demand of interactivity and
number of non-critical pieces of hardware and software. To
this aim not only advanced programming techniques, but
also appropriate control architectures are required. This
paper proposes a generic methodology, actually in use for
our own products, that offers both the possibility to model
such internally competing systems and the capability to co-
ordinate them. A special parallel is drawn between our ap-
proach and the SynDEx1 software methodology, developed
by INRIA, on which our current implementation relies.
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I. Introduction

CLASSICALLY , and according to [1], we consider that
real-time embedded systems react, within bounded de-

lays, to input stimuli received from the environment by gen-
erating output reactions and changing their internal state.
Considering such systems, both hardware and software re-
liability appear to be critical. Various techniques and
tools exist, proposing solutions for implementing mono-
component sequential software.

Nevertheless, when algorithms complexity increases, as
well as the number of integrated sensors and actuators,
classical sequential architectures become inadequate. First,
because a single computing machine can only handle a lim-
ited number of external input/output ports and secondly,
because the ratio between computation volume and the
response time bound becomes too high. Thus, the conve-
nient choice of parallel architectures is required to satisfy
real-time constraints, distributing computation load, and
to take into account the distributed nature of the system
resources (sensors, actuators, computing units, memory).

Programming such architectures is an order of magni-
tude harder than with mono-component sequential ones,
and even more when hardware resources must be minimized
to match cost, power and volume constraints required for
embedded applications [2]. To override the complexity of
computing such application algorithms, the control soft-
ware is built using a dedicated software developed by IN-
RIA: SynDEx. Relying on the AAA2 methodology [1] and
language DC [3], SynDEx objective is to prototype and
optimize implementations of parallel, distributed and het-

P. Pomiers is with Robosoft S.A., Technopole Izarbel, 64200 Bidart,
France. E-mail: pierre@robosoft.fr.

1Synchronized Distributed Executive
2Algorithm Architecture Adequation

erogeneous application through three main steps: specifi-
cation, validation and code generation.

II. Synchronous data flow graph formalism

Handling parallel distributed architecture raises the
problem of scheduling application execution between the
different components of the architecture. In non optimized
solutions, client/server mechanisms must be integrating
manually inside each component executives as it is shown
on Figure 1.

Most of the time, centralized implementation is consid-
ered because it makes system synchronization and consis-
tency be easily maintainable. Nevertheless, this relative
facility for integration shadows non negligible constraints:
system states are stored in one place, component or soft-
ware clients are necessarily directly connected to the server,
and, messages routing between client is realized by the cen-
tral server. Hence, centralized systems are penalized by the
cost of their communication loads. This remark is all the
more evident when the number of both hardware and soft-
ware components increases. Scalability problems can not
find any satisfactory solution with this approach.

Supporting and scheduling fully distributed architecture
is more of the synchronous approach resort. Advantages of
such approach has already been proved as it allows verifica-
tion of functional and temporal requirements, in the early
stages of the development cycle. These languages rely on a
special specification in which algorithms description is a set
of equations that must be always verified by the program
variables. This approach is inspired by formalisms famil-
iar to control engineers like block diagrams (refer to [4] for
further details).

Benefits of using a synchronous data-flow language for
programming critical real-time systems appear clearly: the
data-flow approach meets both the traditional description
tools used in control domain and the ability to support
formal design and verification methods [5]. Figure 2 shows
the way reactive system algorithms are intended to be de-
scribed with this formalism.

III. Implementing optimized distributed
applications

A. AAA methodology overview

AAA methodology aims to find the best matching be-
tween an algorithm and an architecture, while satisfying
constraints. For, it is based on graphs models to exhibit
both the potential parallelism of the algorithm and the
available parallelism of multicomponent architecture. Its
implementation consists in distributing and computing a
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static schedule of the algorithm data-flow graph on the
system architecture graph while satisfying real-time con-
straints and optimizing resources allocation (refer to [6]).

In the case of concrete real-time embedded systems, by
resources we mean the computing power of all the architec-
ture operators (i.e. either processors or micro-controllers),
as well as the data communication bandwidth available on
the communication media interconnecting this set of com-
puting units.

B. Generation of synchronous code

The result of both algorithm graph and architecture
graph transformations is a set of optimized synchronized
distributed macro executives. Generated macro executives
are coded in a specific language, compatible with other syn-
chronous languages compilers and tools, through the com-
mon format DC [3]. Afterward, binary executives, aiming
to be run on the components of the described architecture,
are automatically built from an hardware dependent ex-
ecutive kernel. It exists one executive kernel for each sup-
ported processor supporting various functionalities such as:
memory allocation, data communications, synchronization
and related hardware input/output supports.

Let us point the fact that each operation being a part

of an executive kernel is said to be safe, what means that
its coding has been done regarding to the hardware limits.
The same way, the generalization of this assertion prove
that any composition of such safe operations is safe. A
direct consequence of this is that system architectures run-
ning such generated executives do evolve in a safe state.

C. Conclusion about SynDEx approach

Thanks to the steps of specification, verification inher-
ent to co-design using SynDEx and, finally, thanks to au-
tomatic code generation it offers, most of the usual coding
mistakes are avoided. This point is very encouraging, on
one hand because it saves a lot of development time (gener-
ally spent debugging applications) and, on the other hand,
because it assures the prototyped applications functioning
to be safe. Last, SynDEx provides very small footprint
executives, embedding only the minimum of code required
for designed applications.

Nevertheless, this approach is not beyond reproach. This
technique is extremely efficient while the complete appli-
cation development process respects the same description
formalism. This point has to be discussed. As mentioned
above, data-flow graph techniques, provided by SynDEx to
handle massively parallel architectures, focuses on static
schedule of real-time systems and fixed-duration execu-
tions. If this is well adapted to distributed applications
implemented with a single consistent execution layer, it is
definitely not the case for more complex multi-layered ap-
plication.

IV. Embedded multi-layered applications design

Using SynDEx, for monolithic massively parallel appli-
cations, appears to be really helpful, as it automatizes dis-
tributing and scheduling processes. Nevertheless, this ap-
proach does not fit multi-layered programming. Here, we
propose an additional methodology, intended to be used
implementing such multi-layered applications under the
SynDEx synchronous approach. Afterwards, this integra-
tion approach will be generalized to multi-layered applica-
tions resulting of mixed modeling and programming meth-
ods, either synchronous or not.

A. Preliminary definition

For a best comprehension of what follows, it is now im-
portant to well define what actually is a multi-layered ap-
plication. Each complex application, either in field of em-
bedded systems or not, possesses a variety of features or
execution modes [7]. Each operation or composition of
operations, used for implementing these application parts,
have to be organized in coherent levels of criticality. Hence,
each of such defined levels are adjusted to their specific
functional layer needs. This is the basic concept of appli-
cations consistent execution layers.

It is important to remark that we are not talking about
abstraction layers. Abstraction layers are generally used
for describing the different levels of use of an application
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in terms of software engineering. CEL3 based approach
is really different. In our case, splitting a given applica-
tion does not result from any mind representation of the
application, but results from runtime constraints consider-
ations. This lead to a marginal meaning: indeed, as shown
in Figure 3, classical abstraction layers can cover several
levels of criticality, while, in Figure 3, CELs are depicted
including several pieces of abstraction layers into the same
level of criticality. As a last remark, do keep in mind that a
CEL execution is not constrained to only one architecture
component, but may be distributed over all the hardware
architecture. Consequently, a CEL has to be understood
as a potentially massively parallel and heterogeneous part
of the application.

B. Consistent execution layers internals

As far as abstraction layers splitting is concerned, each
pieces of application executes over multiple criticality levels

3CEL is the denomination we use for consistent execution layer

which are subject to different constraints (either real-time
or not). For instance, it is the case with abstraction layers
including several different real-time periods or including re-
actions to multiple events under interrupts. Consequently,
when implementing abstraction layers using synchronous
languages, it results, at compilation time, sequential or
pseudo-sequential executives, fully synchronized either on
the lowest internal period or less frequent event. Such a
software inevitably runs with no regard to application crit-
icality constraints.

In order to respect application constraints, SynDEx
should be used only for implementing pieces of software
of the same criticality level. Including the remarks given
above, benefits of splitting applications into CELs is now
obvious. Indeed, a given application can be represented as
a set of consistent software layers, what allows each layer
(CEL) to be implemented using SynDEx, independently of
from the others layers.

Let us remark that, CELs splitting can be easily automa-
tized. Let A be a software application composed of several
abstraction layers named Fi where i = {0, ...,N− 1}. As-
suming application A covers P criticality levels Cj where
j = {0, ...,P− 1}. Let us give the mathematical expression
of application A compsition in case of abstraction layers
splitting.

A =
N−1⋃

i=0

Fi (1)

Each abstraction layers Fi covers at leat one criticality
level. Hence we obtain the following equation.

Fi =
P−1⋃

j=0

(Fi ∩ Cj) (2)

Now, we can give a new expression of application A com-
position:

A =
N−1⋃

i=0




P−1⋃

j=0

(Fi ∩ Cj)



 (3)

which is equivalent to:

A =
P−1⋃

j=0

(
N−1⋃

i=0

(Fi ∩ Cj)

)
(4)

Equation 4 describes application A composition as the
union of each software component (of the same criticality
level) sub-set. Let us call these software sub-sets Ek, with
k = {0, ...,P− 1}, such as:

Ek =
N−1⋃

i=0

(Fi ∩ Ck) (5)

application A composition expression becomes:

A =
P−1⋃

k=0

Ek (6)



IEEE INTELLIGENT VEHICLE SYMPOSIUM (IV’2002) 4

Equation 5 bring the proof that all applications com-
posed of abstraction layers get an equivalent application
representation, resulting from a criticality level splitting.
Hence, each inconsistent 4 appllication may be transformed
into a set of independent consistent software layers (CELs).
Each software layers of such equivalent CEL-based applica-
tions now fits synchronous implementation requirements.

Hence, CELs splitting method prevents from blocking in-
teractions between inconsistent parts of software. As a re-
sult, the global implementation of an application becomes
consistent as it fully respects the various application inter-
nal constraints. Figure 5 shows a representation of a CEL
and its interaction infrastructure. Let us note that no ex-
ternal synchronization is possible, synchronization mecha-
nisms are only allowed for internal CEL algorithm. Thus,
a CEL can only exchange data this its environment asyn-
chronously, that is to say without the possibility to block
the distant CELs execution. This functioning well respects
the local execution consistency, as well as, by extension, the
global application execution consistency. About CEL com-
munications, there is no limitation concerning supported
media types: for instance industrial buses, serial lines, net-
work connection, as well as, shared memories may be used.

Asynchronous Communications with others

Possible Internal Dataflow Synchronism

Uncoupling
Criticality Level

or lower criticality level)
Consistent Execution Layers (either of an upper

Consistent Execution Layer

Fig. 5. Generic model of a CEL

Fig. 6. The RobuCar robotics platform

C. Interfacing multiple CELs

Establishing interaction between CELs is something
easy. As CELs executions are not conditioned by any CELs
executions, asynchronous communication interface is noth-
ing but inspired by DMA5 mechanism. In order to prevent
CEL from handling fine data transfers between its own in-

4by inconsistent we mean of different criticality levels
5Direct Access Memory

ternal memory and others CELs memories, a DMA-like
shared memory unit is added to CEL communication layer.

CEL communication interface units include their own
transfer scheduler. The so called data transfer scheduler is
partially independent from CEL instructions scheduler. In-
deed, in order to be programmed and initiated, data trans-
fer scheduler requires calls to instructions scheduler, but
does not interact with it anymore during the transfer. This
allows a real parallelism between computations and com-
munication sequences.

Transfers are realized by an automata, able to access
directly local CEL memory content and to transfer con-
tiguous data from (resp. to) external input (resp. output)
communication media devices. In order to realize such data
transfer, CEL is normally able to access all communication
hardware available on the operator it is handled by. Nev-
ertheless, we recommend intentionally to use only shared
memory devices. Let us justify this choice.

Unlike buses or point-to-point communication media,
shared memory is the only mechanism that allows data
transfer whitout requiring hardware interrupts handling for
reading or writing operations. This remark is very impor-
tant. As it is explained above, data exchanges between
CELs are realized asynchronously, with respect to each
CELs critical functioning. Basically, if some data were
transfered asynchronously under interrupts, each incoming
data would stop execution of the receiving CEL until trans-
fer stops. This would, inevitably, lead to a non-predictable
schedule. On the opposite, considering shared memory de-
vices, CELs integrity is fully preserved. Indeed, each data
transfer falls into two part: reading operations, handled by
the receiving CEL, and writing operations, handled by the
emitting CEL. Hence, even mutually asynchronous, such
reading and writing operations are scheduled on their re-
spective CELs, avoiding any unpredictable behavior. Now,
remains to find a strategy for routing data between CELs.
To this aim, let us detail CEL communication layer nature.

As mentioned above, let Ek, where k = {0, ...,P− 1}, be
software sub-sets of homogeneous criticality levels. Each
sub-sets Ek, representing the CEL of criticality level k, is
could be seen as a set of executives eki (i = {0, ...,n}) at-
tached to a set of computing units Oj (j = {0, ...,N}), as
expressed below:

Ek = {ek0|O0 , ..., eki|O0}
∪...∪ {ekj |OJ

, ..., ekl|OJ
}

∪...∪ {ekm|ON
, ..., ekn|ON

}
(7)

where eki|Oj = ∅ if it exists no executive Ek running on
computing unit Oj. Let Ωk be the computing units set
concerned by CEL Ek execution:

Ωk = {Oh,Oi, ...,Oj} (8)

It becomes possible to determine a computing units sub-
set supporting, simultaneously, two CELs execution (for
instance CEL Ep and CEL Eq):

Ωp|q = Ωp ∩ Ωq (9)
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This last equation is helpful to determine how data
should be routed between two CELs. Assuming Ωp|q is
not empty, if CEL Ep and CEL Eq are consecutive, data
trasfert is possible directly, from one CEL to the other, via
one of the computing unit listed by Ωp|q (please, refer to
figure 7). Else, if CEL Ep and CEL Eq are not consecu-
tive, Ωp|q %= ∅ indicates it exists at least one computing
unit capable to forward data from CEL Ep to Eq. On the
other hand, if Ωp|q est empty, we need to find one or several
intermediate CELs Ek such as:

Ωp"q = Ωp|ki ∪ Ωki|kj ∪ ... ∪ Ωkh|q %= ∅ (10)

that is to say, such as each Ωp|ki , ..., Ωki|kj , ..., Ωkh|q
sub-sets are not empty. Then, Ωp"q figures the computing
unit set need to route indirectly data from CEL Ep to CEL
Eq (please, refer to figure 8). If no CEL, neither group of
CELs, allows to find a solution to this routing problem
(i.e Ωp"q = ∅), CEL Ep and CEL Eq are considered to be
isolated.

V. Evaluation scenarios

Each point of the method discussed here has been com-
forted with a number of applications ranging from critical
sensoring and control to user oriented software. One of
the most representative implemented system is a Robosoft
own industrial product named RobuCar (refer to Figure 6).
RobuCar is a robotized platform, specifically designed for
urban applications and automated transport , composed
of four totally independent wheels (i.e. one DC motor and
one steering servo per wheel). Common car driving se-
curity matters, together with mechanical related ones, led
to the actual RobuCar hardware architecture. The vehi-
cle embeds one Motorola MPC555-based control board per
wheel and an Intel Pentium-based industrial computer. All
architecture components interconnected through two CAN
buses and two serial lines. An Ethernet wireless link can
be added to allow communications with network oriented
application parts running on off-board components. Ba-
sically, the RobuCar set of applications has to cope with
mixed features such as: path planning, wire guidance, im-
age processing, teleoperation, down to critical actuators
control and security procedures.

As an example of typical multi-layers interfacing require-
ments, we propose to describe some aspects of one RobuCar
application, implementing teleoperation and distant mon-
itoring. Figure 9 show the interconnected CELs network
corresponding to the application described below. Let us
notice that CELs are numbered relatively to their own crit-
icality level: from CEL 0, the most critical one, to CEL
7, the less critical one. CELs 0, 1, 3 and 5, distributed
over heterogeneous components, are designed with Syn-
DEx, while remaining CELs are freely developed using mis-
cellaneous programming methods. The following function-
alities are studied (each mentioned sub-set may result from
an abstraction layers partitioning):
Motion control: first, this process is in charge of the user
command acquisition and command filtering. Then, such
computed commands are diffused over the distributed con-
trol boards. Finally, low-level motor and steering servo
controls are performed one each independent control board.
This process corresponds to operations sub-set {CA, CF,
CD, MC, SC} (refer to Figure 9 for abbreviations mean-
ings).
Security control: this process consist of a watchdog, elec-
trically linked to convenient vehicle signals, and emergency
stop handlers (one per wheel) able to drive brakes and in-
hibit incoming motion commands (sub-set {WD, ES}).
User operating level: this level handles user actions and re-
ports them to the control levels (sub-set {UI, HL}).
System monitoring: this part of the application aims to
collect internal status of each control boards and to diffuse
data toward distant components. Thus, status information
may be accessed by two applications: one in charge of mon-
itoring and updating a log data base, and an other one, im-
plementing the graphical user interface (sub-set {ST, SU,
SD, SM, GI}).

Results we obtain obviously reach our expectations and
show that CEL system integration strategy well fits very
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Fig. 9. CEL interpretation of a RobuCar application

constrained embedded robotics applications needs.
First, because, considering the multiple internal process

behaviors, such well described software architecture ap-
pears to be particularly flexible.

Secondly, because the resulting interpretation, also
solves the raised problems of supporting implementation
methods heterogeneity much more than the single hard-
ware heterogeneity. Indeed, here, stand-alone generated
critical synchronous executives and various less critical op-
erations (either supported by user oriented operating sys-
tems or not) accomplish the challenging task of mutually
sharing asynchronously the same application environment

variables, safely and without constraining each others.
Finally, relying on SynDEx for implementation opera-

tions, generated executives appear to have an extremely
small footprint. For instance, considering RobuCar case,
binaries for MPC555 boards (resp. RTAI PC) are smaller
than 4 kilobytes (resp. 9 kilobytes). None of the com-
mercially available solutions, related to distributed embed-
ded systems, provide user with such performances. Indeed,
these approaches focus more on classical kernels and op-
erating system structures, leading to larger binaries: ap-
proximately 20 kilobytes for micro-controllers, up to 1
Megabytes for real-time applications on PC computers.

Conclusion

The approach we discussed in this paper, brings im-
provements to what is proposed in [8] for classical dis-
tributed centralized robotics oriented architectures. Bene-
fits are twofold. First, application distribution and schedul-
ing steps supporting heterogeneous and massively parallel
architectures becomes now possible and fully automatized.
Secondly, this approach may lead to a future extension of
the AAA methodology. Indeed, if criticality level criteri-
ons are introduced for elementary operations and opera-
tors, an appropriate heuristic would enable to automati-
cally partition applications into CELs. To this concern,
in our approach, a new sub-set of criterions, including:
qualification of operators activity predictability, operators
interrupts handling latency, operations execution priority
levels and communication channels reliability. This consti-
tutes a major enhancement. For, as software implemen-
tations quality is usually subject to user viewpoints and
backgrounds, by such an extension we prevent users from
taking not efficient decisions concerning application split,
and enable to focus more on global application description.
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